22 research outputs found

    A Framework for Articulating and Measuring Individual Learning Outcomes from Participation in Citizen Science

    Get PDF
    Since first being introduced in the mid 1990s, the term “citizen science”—the intentional engagement of the public in scientific research—has seen phenomenal growth as measured by the number of projects developed, people involved, and articles published. In addition to contributing to scientific knowledge, many citizen science projects attempt to achieve learning outcomes among their participants, however, little guidance is available for practitioners regarding the types of learning that can be supported through citizen science or the measuring of learning outcomes. This study provides empirical data to understand how intended learning outcomes first described by the informal science education field have been employed and measured within the citizen science field. We also present a framework for describing learning outcomes that should help citizen science practitioners, researchers, and evaluators in designing projects and in studying and evaluating their impacts. This is a first step in building evaluation capacity across the field of citizen science

    Public Participation in Scientific Research: a Framework for Deliberate Design

    Get PDF
    Members of the public participate in scientific research in many different contexts, stemming from traditions as varied as participatory action research and citizen science. Particularly in conservation and natural resource management contexts, where research often addresses complex social–ecological questions, the emphasis on and nature of this participation can significantly affect both the way that projects are designed and the outcomes that projects achieve. We review and integrate recent work in these and other fields, which has converged such that we propose the term public participation in scientific research (PPSR) to discuss initiatives from diverse fields and traditions. We describe three predominant models of PPSR and call upon case studies suggesting that—regardless of the research context—project outcomes are influenced by (1) the degree of public participation in the research process and (2) the quality of public participation as negotiated during project design. To illustrate relationships between the quality of participation and outcomes, we offer a framework that considers how scientific and public interests are negotiated for project design toward multiple, integrated goals. We suggest that this framework and models, used in tandem, can support deliberate design of PPSR efforts that will enhance their outcomes for scientific research, individual participants, and social–ecological systems

    Citizen science can improve conservation science, natural resource management, and environmental protection

    Get PDF
    Citizen science has advanced science for hundreds of years, contributed to many peer-reviewed articles, and informed land management decisions and policies across the United States. Over the last 10 years, citizen science has grown immensely in the United States and many other countries. Here, we show how citizen science is a powerful tool for tackling many of the challenges faced in the field of conservation biology. We describe the two interwoven paths bywhich citizen science can improve conservation efforts, natural resource management, and environmental protection. The first path includes building scientific knowledge, while the other path involves informing policy and encouraging public action. We explore how citizen science is currently used and describe the investments needed to create a citizen science program. We find that: 1. Citizen science already contributes substantially to many domains of science, including conservation, natural resource, and environmental science. Citizen science informs natural resource management, environmental protection, and policymaking and fosters public input and engagement. 2. Many types of projects can benefit fromcitizen science, but one must be careful tomatch the needs for science and public involvement with the right type of citizen science project and the right method of public participation. 3. Citizen science is a rigorous process of scientific discovery, indistinguishable from conventional science apart from the participation of volunteers.When properly designed, carried out, and evaluated, citizen science can provide sound science, efficiently generate high-quality data, and help solve problems

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Pathways to Wellbeing: Public Library Service in Rural Communities

    No full text
    To answer the question “If public libraries are a component of social wellbeing in rural communities, how are they successful?” we conducted, transcribed, coded, and analyzed 114 group and individual interviews with 202 people at eight field research sites in isolated rural communities distributed throughout the United States. Motivating this study is a gap in understanding the library service mechanisms involved at the community level which will yield beneficial social wellbeing outcomes. Through iterative phenomenological analysis, we established how rural residents defined social wellbeing for themselves and how they describe the library’s role in that context. We found that rural residents forego access to standard amenities for access to deep social connections, natural resources, and community cultures of freedom and mutual support. We found long term locally made structural, social, and cultural norms, which we call pathways, through which libraries support wellbeing

    Citizen Science as a Tool for Conservation in Residential Ecosystems

    No full text
    Human activities, such as mining, forestry, and agriculture, strongly influence processes in natural systems. Because conservation has focused on managing and protecting wildlands, research has focused on understanding the indirect influence of these human activities on wildlands. Although a conservation focus on wildlands is critically important, the concept of residential area as an ecosystem is relatively new, and little is known about the potential of such areas to contribute to the conservation of biodiversity. As urban sprawl increases, it becomes urgent to construct a method to research and improve the impacts of management strategies for residential landscapes. If the cumulative activities of individual property owners could help conserve biodiversity, then residential matrix management could become a critical piece of the conservation puzzle. "Citizen science" is a method of integrating public outreach and scientific data collection locally, regionally, and across large geographic scales. By involving citizen participants directly in monitoring and active management of residential lands, citizen science can generate powerful matrix management efforts, defying the "tyranny of small decisions" and leading to positive, cumulative, and measurable impacts on biodiversity
    corecore